

Superconducting YBa₂Cu₃O_{7-δ} nanocomposites using ZrO₂ nanoparticles obtained by polyol route

A. Mesaros, M. Nasui, B. Mos, T. Petrisor Jr., L. Ciontea, T. Petrisor

Technical University of Cluj-Napoca Superconductivity, Spintronics and Surface Science Center – C4S

New approaches for Chemical Solution Deposition (CSD) of $YBa_2Cu_3O_{7-\delta}$ (YBCO) nanocomposites superconducting films.

- The wet-chemical synthesis of well-dispersed, ultrasmall and homogeneous ZrO₂ nanoparticles.
- The growth of YBCO nanocomposite films by CSD employing ZrO₂ nanoparticles stabilized in alcoholic media.

Conclusions and perspectives.

The vortex pinning control using the Artificial Pinning Centers (APC)

The improvement of the critical current density, Jc, under magnetic fields is strongly desired for producing efficient, low-cost HTS coated conductors. Nanocomposites with preformed nanoparticles are promising for Coated Conductors fabrication.

Chemical Solution Deposition (CSD)

- low investment costs and scalability compared to vacuum techniques;
- the growth mechanisms are deeply modified.

- epitaxial structure or randomly oriented.
- YBCO conversion and trapping of nanoparticles

Chemical Solution Deposition (CSD)

 H_3C

ZrO₂ nanoparticles synthesis solvothermal decomposition

Solvent/ stabilizing agent

Reaction conditions:

Thermal Process: 1°C/min heating rate to 280°C / 2 h reflux Washing procedure: $C_4H_8O_2 + C_2H_5OH$ (EtOH)

 ZrO_2 nps stabilized in EtOH 4.7 mM

Zr⁴⁺ H₃C Ο CH_3

Zr(OH)_y

CH₃

Zr⁴⁺

XRD pattern

TEM image

FTIR spectrum

Growth of YBCO-ZrO₂ nanocomposites

2 M % of ZrO_2 nps

Thermal treatment

Optical images of the pyrolized films containing 2M% and 14M $\%~ZrO_2$ nps

CS

Very smooth and homogeneous layers, without any cracks.

Time (min)

Crystallization

AFM investigation

Dense film with homogeneous surface morphology.

YBCO

YBCO- 2 mol% ZrO2

Superconducting properties

% mol ZrO ₂	Тс (К)	Jc (MA/cm²)
0 (УВСО)	90	1.5
2	89	3.43
14	85	0.08

- at 77 K ZrO₂ additions increase the J_c value at low fields, below a cross-over field of approx. 1.6 T;
- at 65 K the ZrO_2 nano-particles prove to be effective pinning centres over a wide field range (up to 7 T);
- the maximum pinning force is almost doubled when ZrO_2 nano-particles are added to the YBCO film;

Conclusions and perspectives

The potential of the ex-situ approach to the growth of superconducting YBCO- ZrO_2 nanocomposites has been proven.

 ZrO_2 nps present a low-crystallinity, but a narrow size distribution and good dispersity.

 $YBCO-ZrO_2$ (2 M%) nanocomposite films present better morphology and superconducting properties than pure YBCO. The presence of BaZrO₃ phase have been evidence by XRD and TEM.

Supplementary investigations are required to achieve a full understanding of the correlation of the synthesis and processing methodologies with the final morphology and structure of nanocomposite films and with their superconducting properties.

Acknowledgements

This work was financially supported by a Grant of the Romanian National Authority for Scientific Research CNCS - UEFISCDI, Project number PN II-RU-TE-2014-4-2848, MAGPIN.